A human operator applies torque τ_1 to a master control arm having inertia I_1 and angular position θ_1, which in turn controls a slave robot arm having inertia I_2 and angular position θ_2. Electrical input i to the slave arm's motor is $K(\theta_1 - \theta_2)$, as shown above. The motor characteristic may be approximated by sets of torque-speed straight-lines, evenly spaced as a function of input i, as shown below. Assume $\frac{d\tau_2}{di} = 1$.

1. What is the transfer function (θ_2/τ_1)?

2. Assume the characteristics of the human muscle, $\tau_1(\theta_1, N)$, are similar to those of the electric motor, $\tau_2(\theta_2, i)$, where N is the intensity of nerve impulses from the brain to the muscle. Assume $C_1 = C_2$ and $\frac{d\tau_1}{dN} = 1$. Then what is the transfer function ($\frac{\theta_2}{N}$)?

3. Investigate (through root locus or otherwise) the stability if the human generates nerve impulses N in proportion to observed slave position error, that is $N = K_h(\theta_2^* - \theta_2)$, where θ_2^* is a desired position.

4. How would this differ if the human could willfully control master position θ_1 as a lagged function of slave position error, that is $\theta_1 = K_h(\theta_2^* - \theta_2)/(Ts + 1)$?

5. What if the human were also sensitive to rate of change of $(\theta_2^* - \theta_2)$?

6. From your intuition which is the most likely, (3), (4) or (5)? Why?

7. If I_1 and I_2 were small and the servo gain K large relative to T, sketch the likely Bode (gain-phase) plot for $\theta_2/(\theta_2^* - \theta_2)$ in case (5).