January 1986 – Oral Exam

A pendulum consists of a mass particle m suspended by a string of length L in a gravity field g. The natural frequency of small oscillations of the pendulum is $\omega_n = \sqrt{\frac{g}{l}}$. In a proposed space station the crew is to live in a doughnut shaped space which rotates at constant angular rate Ω. It is argued that the centrifugal field will simulate the gravity field that the crew is accustomed to. Compare the small-oscillation behavior of the pendulum described above when it’s point of suspension O is at radius R and

a. The pendulum oscillated in the plane through O perpendicular to the central axis $A-A$.
b. The pendulum oscillates in the plane of the sketch. In particular how do the natural frequencies compare with $R = L$?

\[DYNAMICS – Oral Quals \]