CLOSED BOOK

A massless rigid rod of length \(R \) is driven to rotate with constant angular velocity \(\omega \) on a frictionless horizontal surface in the \(xy \) plane perpendicular to gravity. The rod is pivoted about its end point \(A \) at the origin. A second massless rigid rod of length \(S \) is free to rotate in the \(xy \) plane and is pivoted at point \(B \), located at the far end of the first rod. A point mass \(m \) is attached to the other end of the second rod. Both the pivots at \(A \) and \(B \) are frictionless.

At time \(t = 0 \) both rods lie along the \(x \)-axis and \(m \) is given a velocity slightly different from \(\omega(R + S) \) in magnitude. Solve for the subsequent motion of the mass \(m \) and interpret the solution to describe the motion qualitatively.

![Diagram](image)

Figure 1: A schematic of the arrangement.